806 research outputs found

    VSSA-NET: Vertical Spatial Sequence Attention Network for Traffic Sign Detection

    Full text link
    Although traffic sign detection has been studied for years and great progress has been made with the rise of deep learning technique, there are still many problems remaining to be addressed. For complicated real-world traffic scenes, there are two main challenges. Firstly, traffic signs are usually small size objects, which makes it more difficult to detect than large ones; Secondly, it is hard to distinguish false targets which resemble real traffic signs in complex street scenes without context information. To handle these problems, we propose a novel end-to-end deep learning method for traffic sign detection in complex environments. Our contributions are as follows: 1) We propose a multi-resolution feature fusion network architecture which exploits densely connected deconvolution layers with skip connections, and can learn more effective features for the small size object; 2) We frame the traffic sign detection as a spatial sequence classification and regression task, and propose a vertical spatial sequence attention (VSSA) module to gain more context information for better detection performance. To comprehensively evaluate the proposed method, we do experiments on several traffic sign datasets as well as the general object detection dataset and the results have shown the effectiveness of our proposed method

    Decision Fusion in Space-Time Spreading aided Distributed MIMO WSNs

    Full text link
    In this letter, we propose space-time spreading (STS) of local sensor decisions before reporting them over a wireless multiple access channel (MAC), in order to achieve flexible balance between diversity and multiplexing gain as well as eliminate any chance of intrinsic interference inherent in MAC scenarios. Spreading of the sensor decisions using dispersion vectors exploits the benefits of multi-slot decision to improve low-complexity diversity gain and opportunistic throughput. On the other hand, at the receive side of the reporting channel, we formulate and compare optimum and sub-optimum fusion rules for arriving at a reliable conclusion.Simulation results demonstrate gain in performance with STS aided transmission from a minimum of 3 times to a maximum of 6 times over performance without STS.Comment: 5 pages, 5 figure

    Turbo NOC: a framework for the design of Network On Chip based turbo decoder architectures

    Get PDF
    This work proposes a general framework for the design and simulation of network on chip based turbo decoder architectures. Several parameters in the design space are investigated, namely the network topology, the parallelism degree, the rate at which messages are sent by processing nodes over the network and the routing strategy. The main results of this analysis are: i) the most suited topologies to achieve high throughput with a limited complexity overhead are generalized de-Bruijn and generalized Kautz topologies; ii) depending on the throughput requirements different parallelism degrees, message injection rates and routing algorithms can be used to minimize the network area overhead.Comment: submitted to IEEE Trans. on Circuits and Systems I (submission date 27 may 2009

    Simultaneous Codeword Optimization (SimCO) for Dictionary Update and Learning

    Get PDF
    We consider the data-driven dictionary learning problem. The goal is to seek an over-complete dictionary from which every training signal can be best approximated by a linear combination of only a few codewords. This task is often achieved by iteratively executing two operations: sparse coding and dictionary update. In the literature, there are two benchmark mechanisms to update a dictionary. The first approach, such as the MOD algorithm, is characterized by searching for the optimal codewords while fixing the sparse coefficients. In the second approach, represented by the K-SVD method, one codeword and the related sparse coefficients are simultaneously updated while all other codewords and coefficients remain unchanged. We propose a novel framework that generalizes the aforementioned two methods. The unique feature of our approach is that one can update an arbitrary set of codewords and the corresponding sparse coefficients simultaneously: when sparse coefficients are fixed, the underlying optimization problem is similar to that in the MOD algorithm; when only one codeword is selected for update, it can be proved that the proposed algorithm is equivalent to the K-SVD method; and more importantly, our method allows us to update all codewords and all sparse coefficients simultaneously, hence the term simultaneous codeword optimization (SimCO). Under the proposed framework, we design two algorithms, namely, primitive and regularized SimCO. We implement these two algorithms based on a simple gradient descent mechanism. Simulations are provided to demonstrate the performance of the proposed algorithms, as compared with two baseline algorithms MOD and K-SVD. Results show that regularized SimCO is particularly appealing in terms of both learning performance and running speed.Comment: 13 page

    Data-Driven Assisted Chance-Constrained Energy and Reserve Scheduling with Wind Curtailment

    Full text link
    Chance-constrained optimization (CCO) has been widely used for uncertainty management in power system operation. With the prevalence of wind energy, it becomes possible to consider the wind curtailment as a dispatch variable in CCO. However, the wind curtailment will cause impulse for the uncertainty distribution, yielding challenges for the chance constraints modeling. To deal with that, a data-driven framework is developed. By modeling the wind curtailment as a cap enforced on the wind power output, the proposed framework constructs a Gaussian process (GP) surrogate to describe the relationship between wind curtailment and the chance constraints. This allows us to reformulate the CCO with wind curtailment as a mixed-integer second-order cone programming (MI-SOCP) problem. An error correction strategy is developed by solving a convex linear programming (LP) to improve the modeling accuracy. Case studies performed on the PJM 5-bus and IEEE 118-bus systems demonstrate that the proposed method is capable of accurately accounting the influence of wind curtailment dispatch in CCO

    Secrecy Throughput Maximization for Full-Duplex Wireless Powered IoT Networks under Fairness Constraints

    Full text link
    In this paper, we study the secrecy throughput of a full-duplex wireless powered communication network (WPCN) for internet of things (IoT). The WPCN consists of a full-duplex multi-antenna base station (BS) and a number of sensor nodes. The BS transmits energy all the time, and each node harvests energy prior to its transmission time slot. The nodes sequentially transmit their confidential information to the BS, and the other nodes are considered as potential eavesdroppers. We first formulate the sum secrecy throughput optimization problem of all the nodes. The optimization variables are the duration of the time slots and the BS beamforming vectors in different time slots. The problem is shown to be non-convex. To tackle the problem, we propose a suboptimal two stage approach, referred to as sum secrecy throughput maximization (SSTM). In the first stage, the BS focuses its beamforming to blind the potential eavesdroppers (other nodes) during information transmission time slots. Then, the optimal beamforming vector in the initial non-information transmission time slot and the optimal time slots are derived. We then consider fairness among the nodes and propose max-min fair (MMF) and proportional fair (PLF) algorithms. The MMF algorithm maximizes the minimum secrecy throughput of the nodes, while the PLF tries to achieve a good trade-off between the sum secrecy throughput and fairness among the nodes. Through numerical simulations, we first demonstrate the superior performance of the SSTM to uniform time slotting and beamforming in different settings. Then, we show the effectiveness of the proposed fair algorithms

    Approximate MIMO Iterative Processing with Adjustable Complexity Requirements

    Full text link
    Targeting always the best achievable bit error rate (BER) performance in iterative receivers operating over multiple-input multiple-output (MIMO) channels may result in significant waste of resources, especially when the achievable BER is orders of magnitude better than the target performance (e.g., under good channel conditions and at high signal-to-noise ratio (SNR)). In contrast to the typical iterative schemes, a practical iterative decoding framework that approximates the soft-information exchange is proposed which allows reduced complexity sphere and channel decoding, adjustable to the transmission conditions and the required bit error rate. With the proposed approximate soft information exchange the performance of the exact soft information can still be reached with significant complexity gains.Comment: The final version of this paper appears in IEEE Transactions on Vehicular Technolog

    Channel Estimation for RIS-Empowered Multi-User MISO Wireless Communications

    Full text link
    Reconfigurable Intelligent Surfaces (RISs) have been recently considered as an energy-efficient solution for future wireless networks due to their fast and low-power configuration, which has increased potential in enabling massive connectivity and low-latency communications. Accurate and low-overhead channel estimation in RIS-based systems is one of the most critical challenges due to the usually large number of RIS unit elements and their distinctive hardware constraints. In this paper, we focus on the downlink of a RIS-empowered multi-user Multiple Input Single Output (MISO) downlink communication systems and propose a channel estimation framework based on the PARAllel FACtor (PARAFAC) decomposition to unfold the resulting cascaded channel model. We present two iterative estimation algorithms for the channels between the base station and RIS, as well as the channels between RIS and users. One is based on alternating least squares (ALS), while the other uses vector approximate message passing to iteratively reconstruct two unknown channels from the estimated vectors. To theoretically assess the performance of the ALS-based algorithm, we derived its estimation Cram\'er-Rao Bound (CRB). We also discuss the achievable sum-rate computation with estimated channels and different precoding schemes for the base station. Our extensive simulation results show that our algorithms outperform benchmark schemes and that the ALS technique achieve the CRB. It is also demonstrated that the sum rate using the estimated channels reached that of perfect channel estimation under various settings, thus, verifying the effectiveness and robustness of the proposed estimation algorithms

    Reconfigurable Intelligent Surface Aided NOMA Networks

    Full text link
    Reconfigurable intelligent surfaces (RISs) constitute a promising performance enhancement for next-generation (NG) wireless networks in terms of enhancing both their spectrum efficiency (SE) and energy efficiency (EE). We conceive a system for serving paired power-domain non-orthogonal multiple access (NOMA) users by designing the passive beamforming weights at the RISs. In an effort to evaluate the network performance, we first derive the best-case and worst-case of new channel statistics for characterizing the effective channel gains. Then, we derive the best-case and worst-case of our closed-form expressions derived both for the outage probability and for the ergodic rate of the prioritized user. For gleaning further insights, we investigate both the diversity orders of the outage probability and the high-signal-to-noise (SNR) slopes of the ergodic rate. We also derive both the SE and EE of the proposed network. Our analytical results demonstrate that the base station (BS)-user links have almost no impact on the diversity orders attained when the number of RISs is high enough. Numerical results are provided for confirming that: i) the high-SNR slope of the RIS-aided network is one; ii) the proposed RIS-aided NOMA network has superior network performance compared to its orthogonal counterpart.Comment: arXiv admin note: text overlap with arXiv:1910.0095
    corecore